Practical cinematography and its applications (1913)

Record Details:

Something wrong or inaccurate about this page? Let us Know!

Thanks for helping us continually improve the quality of the Lantern search engine for all of our users! We have millions of scanned pages, so user reports are incredibly helpful for us to identify places where we can improve and update the metadata.

Please describe the issue below, and click "Submit" to send your comments to our team! If you'd prefer, you can also send us an email to mhdl@commarts.wisc.edu with your comments.




We use Optical Character Recognition (OCR) during our scanning and processing workflow to make the content of each page searchable. You can view the automatically generated text below as well as copy and paste individual pieces of text to quote in your own work.

Text recognition is never 100% accurate. Many parts of the scanned page may not be reflected in the OCR text output, including: images, page layout, certain fonts or handwriting.

128 PRACTICAL CINEMATOGRAPHY electro-magnet circuit was a small water-balancer B having two cells and a see-saw motion. This was driven by a stream of water flowing from the tap of the tank R. The „ flow of water from the tap could be regulated. When the elevated cell of the balancer was filled, its weight caused it to fall. As it fell the electric circuit of the battery V was closed. This caused the small vertical rod E to be drawn downwards by the electro-magnet F. The descent of the rod allowed the leaf L to fall. The make and break in the electro-magnet was instantaneous, so that the vertical rod E immediately returned to its normal position, with the result that, when the wing came round, after completing a revolution, it was stopped, and remained there until the second cell of the water- balancer, filling and falling in its turn, repeated the cycle of operations. As the rod carrying the wing L was the common axis of the winch and the driving mechanism of the camera the release of the wing brought the strain of the weight P upon the cord, and thereby moved the camera driving mechanism a complete revolution. Thus it conformed to the " one-turn-one-picture " move- ment. It was a combination of weight-driven and electrical mechanism, and, though apparently complicated and certainly cumbersome, it was satisfactory because it completed its work with