Practical cinematography and its applications (1913)

Record Details:

Something wrong or inaccurate about this page? Let us Know!

Thanks for helping us continually improve the quality of the Lantern search engine for all of our users! We have millions of scanned pages, so user reports are incredibly helpful for us to identify places where we can improve and update the metadata.

Please describe the issue below, and click "Submit" to send your comments to our team! If you'd prefer, you can also send us an email to mhdl@commarts.wisc.edu with your comments.




We use Optical Character Recognition (OCR) during our scanning and processing workflow to make the content of each page searchable. You can view the automatically generated text below as well as copy and paste individual pieces of text to quote in your own work.

Text recognition is never 100% accurate. Many parts of the scanned page may not be reflected in the OCR text output, including: images, page layout, certain fonts or handwriting.

i68 PRACTICAL CINEMATOGRAPHY of the microscope and projected through the instrument as well as the beam from an electric light, incandescent gas burner, or what not. With this effective and compact apparatus many marvel- lous microscopic experiments have been carried out at the Institute, such as the filming of the heart-beats of minute insects, and so forth. One very fascinating investigation was that carried out by Dr. J. Ries, of Switzerland, whereby he secured a cinematographic record of the different phases of the union of the sperm and the egg, as well as the separation of the membrane and segmentation of the sea urchin. The difficulties of such a delicate study were extreme, but the films obtained were of the utmost interest. They enabled the investigator to reconstruct upon the screen the complete phenomenon of fecundation. For this study the subject had to be photographed while immersed in a small vessel containing artificially prepared sea-water, which was re- newed as required. The clock control enabled the camera mechanism to be so turned as to secure a regular series of exposures at the rate of seven per minute. When Dr. Jean Comandon set himself to cine- matograph the most minute microbes, which are so small that two million may be found in a cube measuring only one-twenty-fifth of an inch, he appreciated the limitations of the ordinary micro-